距离上次更新本文已经过去了 731 天,文章部分内容可能已经过时,请注意甄别

@[toc]

前排提醒😂

本篇博客是对下一篇博客《char 类型在内存中的存放》的拓展

并非对 unsigned 类型的详解!


示例 1

c
1
2
3
4
5
6
7
8
9
#include <stdio.h>
int main()
{
int i=-20;
unsigned int j=10;

printf("%d\n",i+j);
return 0;
}

当有符号类型和无符号类型相加的时候,编译器是怎么处理的呢?

c
1
2
3
10000000 00000000 00000000 00010100  -20的原码
11111111 11111111 11111111 11101011 反码
11111111 11111111 11111111 11101100 补码
c
1
00000000 00000000 00000000 00001010   10的补码

-20 的补码和 10 的补码 相加

c
1
2
3
11111111 11111111 11111111 11110110 得到的补码
11111111 11111111 11111111 11110101 反码
10000000 00000000 00000000 00001010 原码 -10

得到的结果为 - 10

image-20211214150204180

当我们把 j 改为 - 10 的时候,编译器依然能给出正确的答案 - 30

这是因为在计算的时候,编译器先按照补码的形式进行运算,最后 % d 打印,格式化为有符号整数

  • 数据的存储和类型无关,只有读取的时候有区别

示例 2

第二个示例可以让我们了解无符号数在应用时候存在的限制

c
1
2
3
4
5
6
7
8
9
10
11
12
13
#include<windows.h>
#include <stdio.h>

int main()
{
unsigned int i;
for(i=9;i>=0;i--)
{
printf("%u\n",i);
Sleep(1000);//更好的观察数据的打印
}
return 0;
}

因为这里我们使用的是 % u 打印无符号数

而无符号数 i 中不可能出现负数,也就没有小于 0 的情况(i 永远大于等于 0)

当 i=0 后继续–,二进制补码变成如下形式

c
1
11111111 11111111 11111111 11111111

因为是无符号数,直接将补码视作原码进行计算

就得出了在窗口中打印的非常大的数字

image-20211216122901387


小结

本篇博客展示了两种无符号数调用的情况

下篇博客讲述 char 类型在数据中的存储的时候会用到!

最近事情真的挺多的,英语 4 级、期末考试

高数和线代真的太难了,两座大山压着我😥

希望期末不挂科

感谢你看到最后,求点赞关注!